Acidification reduces mitochondrial calcium uptake in rat cardiac mitochondria.
نویسندگان
چکیده
Cardiac ischemia-reperfusion (I/R) injury is accompanied by intracellular acidification that can lead to cytosolic and mitochondrial calcium overload. However, the effect of cytosolic acidification on mitochondrial pH (pHm) and mitochondrial Ca2+ (Cam2+) handling is not well understood. In the present study, we tested the hypothesis that changes in pHm during cytosolic acidification can modulate Cam2+ handling in cardiac mitochondria. pHm was measured in permeabilized rat ventricular myocytes with the use of confocal microscopy and the pH-sensitive fluorescent probe carboxyseminaphthorhodafluor-1. The contributions of the mitochondrial Na+/H+ exchanger (NHEm) and the K+/H+ exchanger (KHEm) to pHm regulation were evaluated using acidification and recovery protocols to mimic the changes in pH observed during I/R. Cam2+ transport in isolated mitochondria was measured using spectrophotometry and fluorimetry, and the mitochondrial membrane potential was measured using a tetraphenylphosphonium electrode. Cytosolic acidification (pH 6.8) resulted in acidification of mitochondria. The degree of mitochondrial acidification and recovery was found to be largely dependent on the activity of the KHEm. However, the NHEm was observed to contribute to the recovery of pHm following acidification in K+-free solutions as well as the maintenance of pHm during respiratory inhibition. Acidification resulted in mitochondrial depolarization and a decrease in the rate of net Cam2+ uptake, whereas restoration of pH following acidification increased Cam2+ uptake. These findings are consistent with an important role for cytosolic acidification in determining pHm and Cam2+ handling in cardiac mitochondria under conditions of Ca2+ overload. Consequently, interventions that alter pHm can limit Cam2+ overload and injury during I/R.
منابع مشابه
Evaluation of Cardiac Mitochondrial Function by a Nuclear Imaging Technique using Technetium-99m-MIBI Uptake Kinetics
Mitochondria play an important role in energy production for the cell. The proper function of a myocardial cell largely depends on the functional capacity of the mitochondria. Therefore it is necessary to establish a novel and reliable method for a non-invasive assessment of mitochondrial function and metabolism in humans. Although originally designed for evaluating myocardial perfusion, 99mTc...
متن کاملSorcin modulates mitochondrial Ca handling and reduces apoptosis in neonatal rat cardiac myocytes
Suarez J, McDonough PM, Scott BT, Suarez-Ramirez A, Wang H, Fricovsky ES, Dillmann WH. Sorcin modulates mitochondrial Ca handling and reduces apoptosis in neonatal rat cardiac myocytes. Am J Physiol Cell Physiol 304: C248–C256, 2013. First published November 14, 2012; doi:10.1152/ajpcell.00039.2012.— Sorcin localizes in cellular membranes and has been demonstrated to modulate cytosolic Ca handl...
متن کاملTransient Mitochondrial Depolarizations Reflect Focal Sarcoplasmic Reticular Calcium Release in Single Rat Cardiomyocytes
Digital imaging of mitochondrial potential in single rat cardiomyocytes revealed transient depolarizations of mitochondria discretely localized within the cell, a phenomenon that we shall call "flicker." These events were usually highly localized and could be restricted to single mitochondria, but they could also be more widely distributed within the cell. Contractile waves, either spontaneous ...
متن کاملTransient complex I inhibition at the onset of reperfusion by extracellular acidification decreases cardiac injury.
A reversible inhibition of mitochondrial respiration by complex I inhibition at the onset of reperfusion decreases injury in buffer-perfused hearts. Administration of acidic reperfusate for a brief period at reperfusion decreases cardiac injury. We asked if acidification treatment decreased cardiac injury during reperfusion by inhibiting complex I. Exposure of isolated mouse heart mitochondria ...
متن کاملMechanisms for Intracellular Calcium Regulation in Heart
Initial velocities of energy-dependent Ca(++) uptake were measured by stopped-flow and dual-wavelength techniques in mitochondria isolated from hearts of rats, guinea pigs, squirrels, pigeons, and frogs. The rate of Ca(++) uptake by rat heart mitochondria was 0.05 nmol/mg/s at 5 microM Ca(++) and increased sigmoidally to 8 nmol/mg/s at 200 microM Ca(++). A Hill plot of the data yields a straigh...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of physiology. Heart and circulatory physiology
دوره 287 6 شماره
صفحات -
تاریخ انتشار 2004